Senin, 19 Januari 2009

coordinate

In mathematics and its applications, a coordinate system is a system for assigning an n-tuple of numbers or scalars to each point in an n-dimensional space. This concept is part of the theory of manifolds.[1] "Scalars" in many cases means real numbers, but, depending on context, can mean complex numbers or elements of some other commutative ring. For complicated spaces, it is often not possible to provide one consistent coordinate system for the entire space. In this case, a collection of coordinate systems, called graphs, are put together to form an atlas covering the whole space. A simple example (which motivates the terminology) is the surface of the earth.

Although a specific coordinate system is useful for numerical calculations in a given space, the space itself is considered to exist independently of any particular choice of coordinates. From this point of view, a coordinate on a space is simply a function from the space (or a subset of the space) to the scalars. When the space has additional structure, one restricts attention to the functions which are compatible with this structure. Examples include:

* Continuous functions on topological spaces;
* Smooth functions on smooth manifolds;
* Measurable functions on measure spaces;
* Rational functions on algebraic varieties;
* Linear functionals on vector spaces.

The coordinates on a space transform naturally (by pullback) under the group of automorphisms of the space, and the set of all coordinates is a commutative ring called the coordinate ring of the space.

In informal usage, coordinate systems can have singularities: these are points where one or more of the coordinates is not well-defined. For example, the origin in the polar coordinate system (r,θ) on the plane is singular, because although the radial coordinate has a well-defined value (r = 0) at the origin, θ can be any angle, and so is not a well-defined function at the origin.
The prototypical example of a coordinate system is the Cartesian coordinate system, which describes the position of a point P in the Euclidean space Rn by an n-tuple

P = (r1, ..., rn)

of real numbers

r1, ..., rn.

These numbers r1, ..., rn are called the coordinates linear polynomials of the point P.

If a subset S of a Euclidean space is mapped continuously onto another topological space, this defines coordinates in the image of S. That can be called a parametrization of the image, since it assigns numbers to points. That correspondence is unique only if the mapping is bijective.

The system of assigning longitude and latitude to geographical locations is a coordinate system. In this case the parametrization fails to be unique at the north and south poles.
In geometry and kinematics, coordinate systems are used not only to describe the (linear) position of points, but also to describe the angular position of axes, planes, and rigid bodies. In the latter case, the orientation of a second (typically referred to as "local") coordinate system, fixed to the node, is defined based on the first (typically referred to as "global" or "world" coordinate system). For instance, the orientation of a rigid body can be represented by an orientation matrix, which includes, in its three columns, the Cartesian coordinates of three points. These points are used to define the orientation of the axes of the local system; they are the tips of three unit vectors aligned with those axes.

Tidak ada komentar:

Posting Komentar